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ABSTRACT Quasicrystals are solids with quasiperiodic
atomic structures and symmetries forbidden to ordinary
periodic crystals—e.g., 5-fold symmetry axes. A powerful
model for understanding their structure and properties has
been the two-dimensional Penrose tiling. Recently discovered
properties of Penrose tilings suggest a simple picture of the
structure of quasicrystals and shed new light on why they
form. The results show that quasicrystals can be constructed
from a single repeating cluster of atoms and that the rigid
matching rules of Penrose tilings can be replaced by more
physically plausible cluster energetics. The new concepts make
the conditions for forming quasicrystals appear to be closely
related to the conditions for forming periodic crystals.

About a dozen years ago, a new class of solids was discovered
that exhibits symmetries (e.g., 5-fold symmetry axes) that were
thought to be strictly forbidden. The new materials, dubbed
quasicrystals, challenge conventional ideas about symmetry
and order in solids. Ever since their discovery, the key puzzle
has been: Why do atoms form a complex quasicrystal pattern
rather than a regularly repeating crystal arrangement? A
leading proposal has been that atoms arrange into two or more
clusters analogous to tiles in a Penrose tiling (1) and have
interactions that mimic matching rules (2–4). This model has
been criticized, though, because the rules seem too compli-
cated to be manifested in the simple atomic interactions of
metal alloys. This paper focuses on recent discoveries about
Penrose tilings that suggest that the conditions for making
quasicrystals are much less complicated than had been thought
(4); in fact, they are very similar to conditions for forming
ordinary crystals.
The newly discovered properties of Penrose tilings address

the two principal concerns with the Penrose tiling model of
quasicrystals. One result is that a quasiperiodic tiling can be
forced using only a single type of tile, instead of the two
different types invoked in a Penrose tiling. The second result
is that matching rules can be discarded in favor of maximizing
the density of a chosen cluster of tiles. If one imagines the tile
cluster to represent some energetically preferred atomic clus-
ter, then minimizing free energy would naturally maximize the
cluster density. These ideas had been conjectured previously
(5) but have now been established rigorously by my collabo-
rator Hyeong-Chai Jeong and myself, inspired by results from
German mathematician Petra Gummelt (6, 7). From these
results, there arises a natural explanation of why quasicrystals
form and a new appreciation for the subtleties of crystallo-
graphically forbidden symmetries.

The discovery of quasicrystals (8) a dozen years ago was
shocking because these solids exhibit 5-fold symmetry axes
arranged in a three-dimensional icosahedral symmetry, the
most famous forbidden crystal symmetry. The key property of
quasicrystals is that their atomic structure is quasiperiodic,
rather than periodic as in ordinary crystals (2–4). Instead of
atoms repeating throughout the structure at some regular
interval, as in ordinary (periodic) crystals, atoms in quasicrys-
tals are spaced at long or short intervals that repeat with
incommensurate frequencies. Incommensurate means that the
frequency of long intervals divided by the frequency of short
intervals is an irrational number, inexpressible as the ratio of
integers. It is precisely because they are quasiperiodic that
quasicrystals can violate the laws of periodic crystal symmetry
developed by Bravais over 150 years ago. All previously
forbidden symmetries are allowed for quasicrystals. These
include 5-, 8-, and 12-fold symmetry axes, all of which have
been observed in different materials since 1984. Some quasi-
crystals consist of periodically stacked layers in which atoms
are packed quasiperiodically within each layer in one of the
forbidden symmetry patterns. Others are quasiperiodic in all
three dimensions and exhibit 5-fold axes arranged with icosa-
hedral symmetry.
Just as periodic tilings are a powerful tool for visualizing the

structure and properties of crystals, the Penrose tiling (1) has
been influential in developing intuition about quasicrystals.
Dov Levine, now at the Technion, and I had the Penrose tiling
in mind when we first hypothesized the possibility of quasi-
crystals as a new phase of solid matter (2–4). The tiling is
composed of two tiles, fat and skinny rhombi, that repeat with
incommensurate frequency. As a result, the ratio of fat and
skinny tiles is an irrational number, the golden mean so
beloved by the Greeks. To force the tiles to make a quasi-
periodic tiling, one must introduce matching rules for how any
pair of tiles can join edge-to-edge. We showed that a three-
dimensional analogue exists and proposed the possibility of
quasicrystal solids in which each tile is replaced by a cluster of
atoms. We further computed the diffraction pattern obtained
by scattering electrons from quasicrystals with 5-fold symme-
tries axes and showed that it agreed with the pattern measured
for the newly discovered icosahedral alloys.
In spite of the apparent success of the Penrose picture,

concerns about the complex atomic interactions required to
mimic the original Penrose matching rules have motivated
alternative models for quasicrystals (9). Each treated quasi-
crystals as some kind of disordered phase that is thermody-
namically metastable or stable only at high temperatures. In
recent years, though, quasicrystals have been discovered whose
diffraction properties, including dynamical scattering effects,
indicate near-perfect quasiperiodic order (as perfect as the
periodic order exhibited by the best metallic crystals) and
whose structure apparently remains thermodynamically stable
as temperature decreases (10). The newly discovered proper-
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ties of Penrose tilings buttress the theoretical case for the
Penrose tiling picture by showing that the requirements can be
reduced to those similar for crystals. The structure is reinter-
preted in terms of a single repeating unit (e.g., an atomic
cluster), just as for crystals, with the difference that neighbor-
ing clusters share atoms. Furthermore, this structural motif is
suggested to play an integral role in energetics: quasicrystals
form if sharing atoms is energetically favored (6).

Single TileyMatching Rule

The first surprise is that a quasiperiodic tiling can be forced
using a single type of tile combined with a matching rule (see
Fig. 1). The tiling is unconventional (perhaps a better term is
a ‘‘covering’’) since the decagon tiles are permitted to overlap,
but only in certain discrete ways, A or B type. As an analogy
to a real atomic structure, the overlaps should be construed as
the sharing of atoms between neighboring clusters rather than
interpenetration of two complete clusters. Realistic atomic
models of known quasicrystals are known to incorporate
clusters whose geometry enables sharing of atoms without
distortion of the cluster shape (9, 11–14).
The decagon construction was originally proposed by P.

Gummelt (7), who presented an elaborate proof. Jeong and I
have found a very simple, alternative proof outlined below that
makes clear the relation to Penrose tilings and leads us to a
second novel scheme.
The proof is based on inscribing each decagon with a fat

Penrose rhombus tile, as illustrated in Fig. 1c. The original
Penrose tiling is constructed from fat and skinny rhombi with
marked edges such that two edges may join only if the type and
direction of arrows match (4, 15). Gummelt showed that, in a
perfect decagon tiling, there are exactly nine ways a decagon
can be surrounded by neighbors that have A or B overlaps with

it (7). The allowed configurations of overlapping decagons may
be mapped into configurations of inscribed rhombi. For any
two overlapping decagons, the inscribed rhombi share at least
one vertex and sometimes share an edge. Where the rhombi
join at a vertex only, there is an open angle formed by the edges
that are the location and shape where skinny rhombi can be fit
according to the Penrose matching rules. Seven of the nine
decagon configurations correspond to completely surrounding
an fat tile by neighboring tiles. In the other two cases, one
rhombus vertex is incompletely surrounded; but, there are only
two allowed ways of adding overlapping decagons so that the
inscribed rhombi complete the vertex. Counting all of these,
the decagon overlap rules map into eleven ways of completely
surrounding a central fat tile with fat and skinny tiles, precisely
the number and types allowed by the Penrose arrow rules.
Restricting the surroundings of every fat tile to these eleven
types is equivalent to enforcing the Penrose arrow rules for fat
and skinny tiles; and, thus, the proof is completed. An impor-
tant corollary is that the two-tile Penrose tiling can be rein-
terpreted in terms of a single repeating motif, suggesting a
similar interpretation for quasicrystals.

Maximizing Cluster Density

The second surprise is that matching rules can be avoided.
Instead, a perfect Penrose tiling can arise simply bymaximizing
the density of some chosen tile cluster, C. Imagine all possible
tilings constructed from fat and skinny rhombi with no match-
ing rules. These include quasiperiodic, periodic, and random
tilings. Then, the claim is that the Penrose tiling uniquely has
the maximum density ofC clusters. (Two tilings are considered
equivalent if they differ by patches whose density has zero
measure.) The physical analogue is that C represents some
low-energy microscopic cluster of atoms and that minimizing
the energy naturally maximizes the cluster density and forces
quasiperiodicity.
The cluster C is shown in Fig. 2. This choice is motivated by

the fact that the C clusters in a Penrose tiling and the decagons
in a decagon tiling are in one-to-one correspondence. Al-
though they have different shapes, their key similarity is that
two neighboring C clusters can share tiles in two ways isomor-
phic to the A and B overlaps of decagons. (The hexagon side
wings in Fig. 2 are introduced to prevent other kinds of
overlaps.) Hence, the Penrose tiling has the unique property
that every C cluster has an A or B overlap with its neighbors.
However, this does not prove that it has the maximum rC,
defined as the number ofC clusters per unit area in units where
an skinny rhombus has area equal to unity.
The proof uses the concept of ‘‘deflation.’’ Deflation cor-

responds to replacing each complete C cluster by a larger,

FIG. 1. Quasiperiodic tiling can be forced using a single tile, the
marked decagons shown in a. Matching rules demand that two
decagons may overlap, as shown in b, only if shaded regions overlap
and the overlap area is greater than or equal to the hexagonal overlap
region indicated as A. This permits two possible types of overlap
between neighbors: either small (A type) or large (B type), as shown
in b. If each decagon is inscribed with an fat rhombus, as shown in c,
a tiling of overlapping decagons (d Left) can be transformed into a
Penrose tiling (d Right), where space for the skinny rhombi incorpo-
rated.

FIG. 2. Cluster C consists of five fat and two skinny rhombi with
two side hexagons composed of two fat and one skinny rhombus each.
There are two possible configurations for filling each side hexagon; the
two possibilities are shown with dashed lines on either side in a. Under
deflation, each C cluster can be replaced by a single ‘‘deflated’’ fat
rhombus, as shown in b. There is a configuration of nine C clusters
shown in c (thin lines) that, under deflation, forms a scaled-up C
configuration (medium lines), called a DC cluster. Under double-
deflation, each DC cluster is replaced by ‘‘doubly deflated’’ fat
rhombus (thick lines).
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‘‘deflated’’ fat rhombus (see Fig. 2). The deflated rhombus has
t times the side length and times the area of the original, where
t 5 1.618 . . . is the golden ratio. Because Penrose tilings are
self-similar (1), the density of deflated fat rhombi equals t22

times the density of original fat rhombi, which equals the
density of C clusters: r0

C) 5 1y(3t 1 1). The deflation
operation can be repeated: identify all configurations of
deflated rhombi that form a scaled-up version of the C cluster
(call this configuration a DC cluster) and replace each with a
yet-larger fat tile (see Fig. 2). Due to self-similarity, rDC 5
r0
Cyt2 for a Penrose tiling. For non-Penrose tilings, deflation
corresponds to the same replacement wherever nine fat
rhombi form a complete C cluster, but the deflated tiling is not
necessarily similar to the original and may include voids. Our
proof is by contradiction: If a tiling existed with rC . 1y(3t 1
1), then deflating it repeatedly increases the density without
bound—an impossibility.
Because the C clusters can overlap, a reliable scheme for

assigning, or at least bounding, the area occupied by a given C
cluster is needed. A useful trick is to decorate each C cluster
as shown in Fig. 3. The kite-shaped region, which has area 3t
1 2, will be called the ‘‘core area’’ of the C cluster. Although
C clusters can overlap to some degree, the only possibilities for
close overlap are A overlaps, in which the core areas meet
along an edge; orB overlaps, in which there is a specific overlap
of core areas (Fig. 3). In a Penrose tiling, these core areas fill
the entire plane without holes. If the core area of a C cluster
is not overlapped by any neighboring core areas, it can be
assigned the entire core area (at least that); for these cases, the
C clusters occupy area greater than or equal to 3t 1 2, so they
decrease the density relative to the Penrose value rC 5 1y(3t
1 1). TwoC clusters with B overlaps are assigned area less than
3t 1 1 due to the overlapped core areas. Hence, an important
conclusion is reached: B overlaps are the only mechanism for
exceeding Penrose density.
To exceed the Penrose density, a tiling must have a greater

density of B overlaps than Penrose tiling. However, this
condition is not sufficient. In Penrose tiling, every B overlap of
two C clusters is surrounded by a DC cluster (see Figs. 2 and
3). In a non-Penrose tiling, a fraction of B overlaps may not be
part of a DC cluster (i.e., one or more of the seven other C
clusters that compose a DC cluster is not present). In these
cases, it is straightforward to show by explicit constructions
that one can always identify an area attached to the associated
B overlap that does not belong to the core area of any C cluster
and is not associated with any other B overlap. This ‘‘extra’’
unassigned area occupies at least as much area as saved by the
B overlap. Hence, a B overlap that is not part of a DC cluster
does not contribute to increasing the density of C clusters
above the Penrose value.
Suppose there were a tiling with a density of C clusters

greater than the Penrose value. Then, it has just been shown
that it must have a higher density of DC clusters than in a
Penrose tiling, RDC . t22, where RDC is the number of DC

clusters divided by the number of C clusters. Under deflation
and rescaling the area by t22, each DC cluster becomes a C
cluster of the deflated tiling whose density is t2RDCrC. Since
RDC is more than t22, the deflated tiling has a density of C
clusters that is strictly greater than the original tiling. Repeat-
ing the deflation ad infinitum would lead to an impossible
tiling with an unbounded density of C clusters. A corollary is
that, if theC cluster density equals the Penrose value, then RDC
5 t22 (the Penrose tiling value) and theC cluster density in the
deflated tiling must equal the Penrose value. This is useful in
proving that the Penrose tiling is the unique tiling with rC 5
1y(3t 1 1). Suppose there were a non-Penrose tiling with the
same density. It has been argued that the only local configu-
rations that can increase the density above the Penrose value
are DC clusters and that the increase in density is due to the
B overlap of core areas, which is the same for each DC cluster.
The corollary says that the hypothetical tiling has the same
density of DC clusters and, hence, the same density of B
overlaps surrounded by DC clusters as Penrose tiling. How-
ever, by definition, the non-Penrose tiling must also have
patches with nonzero area measure, which violate the Penrose
matching rules and so cannot belong to the core area of any C
cluster. Since the DC cluster density is the same but there are
these patches, it would appear that the average area per C
cluster must be less than the Penrose density. The only
conceivable exception would be if there happen to be addi-
tional B overlaps that do not belong to DC clusters whose
overlap area exactly compensates the area of the patches. Even
this possibility can be eliminated because the corollary states
that RDC 5 t22, which means that the density of C clusters
remains unchanged under deflation and rescaling. Yet, the
patches grow: a patch excluded from a C cluster must also be
excluded from a DC cluster, but also, some C clusters that
border the patches cannot be part of a DC cluster and add to
the patch area. Since the number of C clusters remains fixed
but the patches grow, theC cluster density in the deflated tiling
must be less than the Penrose value. This contradicts the
corollary; hence, uniqueness is established.

Implications

The two new approaches to Penrose tiling, a single tile type and
maximizing cluster density, can be combined. Together, they
suggest a new view of the structure of quasicrystals and why
they form.
The atomic structure can be reinterpreted in terms of a

single repeating cluster, rather than two different clusters. This
simplifies atomic modeling since atomic decoration of only the
single cluster need be considered. The modeling is further
constrained since the cluster must be capable of sharing atoms
in certain discrete ways with neighbors.
The results also suggest physically plausible conditions that

can lead to quasicrystal formation, shedding new light on an
old mystery. They imply that quasicrystals can be understood
by considering the energetics of microscopic clusters and that
cluster overlap is an important structural element, establishing
an earlier conjecture (6).
The simplest energetics would be assigning negative energy

to the clusters and zero energy to all other local configurations,
since this is sufficient to cause the minimum free energy state
to be the maximum cluster density state. However, it is
important that the energetics be robust. Some experiments
with other energetics assignments suggest that there is a
continuum of possibilities that lead to the same Penrose
ground state, but this needs to be studied further.
All of these concepts can be tested using the atom clusters

of known quasicrystals. Our two-dimensional tiling results can
most readily be applied to decagonal quasicrystals that have
periodically spaced layers with Penrose tiling structure. The
extension to three-dimensional icosahedral symmetry is a

FIG. 3. Associated with each C cluster is core area (with area 3t 1
2) consisting of a kite-shaped region, shown as shaded in a. In a
Penrose tiling, core areas of neighboring tiles either join edge-to-edge
(A overlap) or overlap by a fixed amount (B overlap), as shown with
dark shading in b. c is a DC cluster that illustrates the core areas of the
nine C clusters that compose it. An isolated DC cluster contains one
B overlap (see dark shading) and the rest A overlaps.
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future challenge, although past experience suggests that two-
dimensional properties can be extended to three-dimensions.
If these principles can be established, they may enable the
reliable prediction of new quasicrystals.
As an example of the application of symmetry principles, the

subject of quasicrystals is still in a primitive stage. The Bravais
classification of crystal point symmetries, as well as space
groups, has been achieved. But, the key confusions about the
structure and formation of quasicrystals, as described in this
paper, go beyond symmetry classification. Herein, our concept
of quasicrystals has been heavily influenced by experience with
Penrose tilings and Penrose matching rules. Based on the
original rules, it appeared that two or more repeating units,
rigid matching rules and nonlocal growth rules were required
to build the structure. All of these have been shown to be
unnecessary, but only by further imaginative tiling construc-
tions. Even so, it is uncertain, without more constructions,
whether the results generalize to other symmetries and other
dimensions. What is missing are powerful mathematical tech-
niques analogous to the group theoretic methods applied to
the structure periodic crystals 150 years ago. Our ultimate
challenge is to understand how the new results shown in this
paper arise directly from quasiperiodicity and crystallographi-
cally forbidden symmetries.
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